Changes in surface properties and separation efficiency of a nanofiltration membrane after repeated fouling and chemical cleaning cycles
نویسندگان
چکیده
The aim of this study was to evaluate the changes in membrane surface properties and solute separation by a nanofiltration membrane during repetitive membrane fouling and chemical cleaning. Secondary treated effluent and model fouling solutions containing humic acids, sodium alginate, or silica colloids were used to simulate membrane fouling. Chemical cleaning was carried out using a commercially available caustic cleaning formulation. Carbamazepine and sulfamethoxazole were selected to examine the filtration behaviour of neutral and negatively charged organic compounds, respectively. Results show that the impact of membrane fouling on solute rejection is governed by pore blocking, modification of the membrane surface charge, and cake enhanced concentration polarisation. Caustic cleaning was effective at controlling membrane fouling and membrane permeability recovery was slightly more than 100%. In good agreement with the literature, the high membrane permeability recovery observed here suggests that caustic cleaning could lead to temporary enlargement of the membrane pores. In addition, microscopic observations based on scanning electron microscopy and energy dispersive spectroscopy revealed some irreversible fouling on the chemical cleaned membrane. Thus caustic cleaning did not completely remove all foulants from the membrane surface and the membrane surface hydrophobicity and zeta potential changed correspondingly. The temporary enlargement of the membrane pores due to caustic cleaning subsequently led to notable changes in the rejection of inorganic salts (measured by conductivity) and carbamazepine. By contrast, the impact of chemical cleaning on the rejection of the negatively charged sulfamethoxazole was negligible. This is because the rejection of sulfamethoxazole is predominantly governed by electrostatic repulsion between the compound and the negatively charged membrane surface and thus is not significantly influenced by any enlargement of the membrane pores.
منابع مشابه
Influence of formulated chemical cleaning reagents on the surface properties and separation efficiency of nanofiltration membranes
This study investigated the impact of two caustic and one acidic cleaning formulations (namely MC11, PC98, and MC3, respectively) on the properties and separation efficiency of three different nanofiltration (NF) membranes (namely NF270, NF90 and TFC-SR100). Overall, the impact of chemical cleaning on surface properties and rejection was membrane and cleaning reagent specific. It was driven mos...
متن کاملMechanisms Involved in Osmotic Backwashing of Fouled Forward Osmosis (FO) Membranes
Organic matter leads to one of the biggest problems in membranes: fouling. Developing efficient cleaning processes is therefore crucial. This study systematically examines how alginic acid fouling formed under different physical and chemical conditions affect osmotic backwashing cleaning efficiency in forward osmosis (FO). The fouling layer thickness before and after osmotic backwashing was mea...
متن کاملPreparation of Novel Thin-Film Composite Nanofiltration Membranes for Separation of Amoxicillin
Several novel composite membranes were prepared to separate and recycle amoxicillin from pharmaceutical wastewater via nanofiltration process. The synthesis of these membranes included three stages: 1- preparation of polysulfone ultrafiltration membranes as a support via phase separation process, 2- modification of its surface by interfacial polymerization as a selective layer (polyamide), and ...
متن کاملSeparation Efficiency of Epoxified-Polyethersulfone Blend Membrane for Chromium Removal
A microporous bisphenol A diglycidyl ether (DGEBA) epoxified-polyethersulfone (PES) blend membrane (EPES membrane) was prepared through dry-wet phase inversion. This study attempts to correlate the changes in membrane physical and chemical properties when the EPES membranes were exposed to different durations of dry-phase inversion, towards the separation efficiency of carcinogen chromium (VI)....
متن کاملA New Approach to Provide High Water Permeable Polyethersulfone based Nanofiltration Membrane by Air Plasma Treatment
In this study, polyethersulfone based nanofiltration membranes were modified by air plasma generated through dielectric barrier discharge to increase the membrane hydrophilicity aiming to improve the separation and antifouling characteristics. The effect of plasma time on the physico-chemical and separation properties of membrane was investigated. The PES nanofiltration membranes were fabricate...
متن کامل